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A study is made of the dynamic fatigue response of brittle materials containing 
indentation-induced line flaws. The theoretical fracture mechanics of "median" crack 
evolution to failure under applied tension are first developed, with special emphasis on 
the role of residual contact stresses. In particular, it is shown that use of fatigue curves 
to evaluate the exponent in an assumed power-law crack velocity function may result in 
systematic error, by as much as a factor of two, if proper account is not taken of this 
residual contact contribution. Data from strength tests on soda-lime glass bars in water, 
using a tungsten carbide cutting wheel to introduce the median pre-cracks, confirm the 
basic predictions. The results suggest that extreme care needs to be exercised when using 
surfaces with a contact history, e.g. as with machining damage, in fatigue test programmes 
for materials analysis. 

1. Introduction 
In a series of recent papers it has been shown how 
controlled indentation flaws can be used to obtain 
accurate and reliable fatigue strength data for 
brittle materials [1-6]. The capacity to predeter- 
mine the scale and location of the critical flaw is 
a key element in the fracture mechanics analysis, 
for the experimenter then has the unique oppor- 
tunity of following the flaw at all stages of its 
evolution to failure. A major conclusion which 
emerges from such observations is that the Griffith 
concept of a well-defined microcrack driven 
exclusively by an applied tensile field is inad- 
equate; the indentation flaw certainly does have the 
nature of a well-defined crack, but its driving force 
contains an important additional component, one 
associated with the residual stress field about the 
plastic contact zone [7-9].  The influence of this 
additional component is manifest in conventional 
fatigue plots, i.e. in plots of failure stress against 
stress rate ("dynamic fatigue") [1] or lifetime 
("static fatigue") [2]. Thus whereas for flaws 
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satisfying a power-law crack velocity function 
the linearity of such plots in logarithmic coordi- 
nates still holds to good approximation, the slope 
and intercept are significantly altered. The "appa- 
rent" exponent and coefficient of this velocity 
function evaluated from fatigue data need to be 
converted, via an appropriate set of "transformation 
equations" [3-6],  to "true" parameters represent- 
ative of macroscopic crack growth. 

Although indentation crack systems might 
appear as somewhat contrived entities in the 
context of the strength of real materials, there 
is increasing evidence to suggest that such systems 
do, in many important practical cases, contain 
the essence of flaw response. This is especially 
so for flaws with a surface-contact history, e.g. 
particle impact [10, 11], where the analogy with 
an indentation process is obvious; however, 
insofar as the distinctive feature of the flaw 
description is the presence of a residual crack 
driving force, the modified fatigue analysis may 
have a far broader compass than this [6]. On the 
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other hand, the analysis developed in the earlier 
studies [1-5]  was restrictive in one important 
sense, that of flaw geometry; by considering only 
axisymmetric indentations, e.g. as produced by a 
normally loaded Vickers pyramid, the trans- 
formation relations derived were strictly applicable 
to just "point" flaw configurations. "Line" flaw 
configurations, e.g. as produced by translating a 
sharp indenter across a surface [12], are governed 
by different starting equations in the fracture 
mechanics formulation. In the most recent of the 
fatigue studies Fuller et  al. [6] analysed the two 
geometrical types in some detail, and concluded 
that the line flaw was even more sensitive to 
residual-stress effects than its point-flaw counter- 
part. In particular, whereas for the latter case the 
apparent and true crack velocity exponents dif- 
fered by a factor of about 4/3, for the former the 
corresponding factor was about 2. Discrepancies 
of this magnitude have indeed been reported by 
Pletka and Wiederhorn [13] in fatigue tests on 
surface-machined ceramics, although in their 
experiments no attempt was made to characterize 
the critical flaw. 

In this paper we present the results of an exper- 
imental study of controlled line flaws aimed at 
testing the predictions of the residual stress theory. 
The test material is the same soda4ime glass as 
used in earlier work [1, 2], thereby providing a 
convenient base for data comparison. Line flaws 
are introduced by means of a glass-cutting wheel 
[14]. The failure tests are conducted at constant 
stressing rates in water. Analysis of the ensuing 
fatigue plot confirms the existence of a large 
discrepancy in the velocity exponents. It is con- 
cluded that extreme care needs to be exercised in 
the use of strength data from "natural" surfaces 
in the evaluation of materials for long-lifetime 
applications. 

2. Theoretical background 
Consider the line flaw system shown in Fig. 1. The 
contact event responsible for creating the flaw is 
characterized by the residual deformation track, 
half-width a, that it leaves on the specimen surface. 
There are two main ways in which such a track 
may be produced: (i) in wedge loading at normal 
force Pz per unit length along the contact line; 
(ii) in axisymmetric loading at normal force P, 
but with linear translation. Of these, the second, 
the case illustrated in Fig. 1, is more amenable to 
controlled experimentation, although it can be 
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Figure i Schematic showing parameters of line flaw 
system. 

argued that there is a certain equivalence between 
the two (Appendix I). Immediately below the 
deformation track a "median" crack, depth c, 
is formed. This crack leaves no characteristic 
"radial" trace on the specimen surface, as it does 
with point indentations [9]. In general, sideways- 
spreading "lateral" cracks (not shown in Fig. 1) 
also form below the deformation track [12]; these 
play only a secondary role in the strength degra- 
dation process, and will accordi@y not be given 
detailed attention here. 

The line flaw system thus produced is subjected 
to a subsequent applied tensile stress aa, which 
takes the median crack system to failure. The 
object of our exercise here is to determine the 
critical failure stress, o~, under dynamic fatigue 
conditions, i.e. da = constant, in terms of appro- 
priate indentation variables and crack velocity 
parameters. 

2.1. Incorporation of residual contact term 
into basic fracture mechanics 

In this section we write down a stress intensity 
factor for the line flaw configuration, placing 
special emphasis on the residual contact com- 
ponent. We also derive expressions for the "inert" 
strength to provide a reference baseline for analysis 
of the ensuing fatigue response. 

Regardless of the way in which the linear 
deformation track is produced there will be a 
residual stress field of approximately cylindrical 
symmetry due to elastic/plastic mismatch. The 
source of this field lies in the accommodation of 
the contact impression volume by the elastic 
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matrix surrounding the plastic zone radius b [9]. 
A detailed analysis of the field intensity in terms 
of the elastic/plastic properties of the test material 
and the characteristic half-angle ~b of the indenter 
is given in Appendix II. For present purposes it 
is sufficient to define a single, dimensionless 
material/indenter parameter X which incorporates 
all these factors into a simple expression for the 
residual driving force on the median crack. Thus 
we may write a residual stress intensity factor of 
the general form for straight cracks generated by 
an "effective" line force Pl [12], 

Kr = x e t / c i / 2 .  (1) 

For static line loading Pt identifies with the actual 

line force on the indenter; for translating point 
loading we may talk of an equivalent line force 
(Appendix I). (It may be noted that the corre- 
sponding stress intensity factor for statically 
loaded point flaws differs only in the crack-size 
exponent, 3/2 instead of 1/2 [8].) 

If the residual stress factor in Equation 1 were 
to be sufficient to maintain the median crack in a 
state o f  mechanical equilibrium after completion 
of the contact process, i.e. K = K  c, where K e 
defines the material toughness, then 

Co = (xPI /Kc)  2 (2) 

would represent the initial crack depth in the 
subsequent strength testing. There are, however, 
several factors which effectively relax Kr below 
Ke, in which case Equation 2 underestimates the 
true crack depth, c~ say. First, during the actual 
contact process there is an elastic component of 
the field which augments the residual component 
[7, 9]. Whereas for a fine contact this component 
is zero at the median plane, for a point contact 
it is tensile [15]. In the latter case, therefore, the 
maximum crack driving force is attained at full 
loading, so that the crack must close up partially 
as the indenter is withdrawn. Second, the growth 
of lateral cracks, which tends to occur also upon 
indenter wffhdrawal, can relax the intensity of the 
residual field somewhat [1, 14, 16]. Third, the 
presence of a reactive environment can cause 
post-indentation, subcritical extension of the 
median crack [1, 17]. Clearly, the degree to which 
Equation 2 underestimates the initial crack depth 
in the failure test will depend on the elastic/ 
plastic properties of the material, but other 
factors, such as the exposure time of the indented 
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surface to the atmosphere, can have a significant 
effect. 

Suppose now the median crack is subjected to 
the tensile stress Oa. The stress intensity factor 
appropriate to this loading is of the familiar form 

K a = g/oac 1/2 (3) 

where ~ is a crack geometry constant. Equations 
1 and 3 may then be combined additively to yield 
the net stress intensity factor 

K = K r + K  a = x P t / c  1 /2  + ~tTa 81/2, 

(c i> c~). (4) 

The strength of the test piece is determined as the 
stress to take the crack from its initial size to an 
instability configuration, defined by the condition 
K = Ke,  dK/dc  > O. 

The strength under inert conditions of testing 
can be obtained immediately from Equation 4 by 
requiring that the crack should remain in a state 
of mechanical equilibrium in its approach to the 
instability. Accordingly, we insert K = K c  into 
Equation 4, and rearrange to determine the equi- 
librium-stress/crack-size function 

a a = ( K e / I ~ c l / 2 ) ( 1  - -  xe t /Kcc l /2 ) .  (5) 

For the limiting case X = 0, corresponding to ideal 
Griffith flaws, the failure is spontaneous at the 
initial flaw size, so the inert strength at e ~ = oa(c~) 
is given by 

o = Ke /$c~ l / z  (6) oi 
in the absence of residual stresses. 

For the more general case X:#0, the failure 
mechanics are more complex [8]. The function 
aa(C) in Equation 5 now passes through a maxi- 
mum at 

cm = (2xez /Ke)  2 (7) 

and the failure condition is contingent on whether 
t �9 Co is smaller or larger than this quantity. If smaller, 

the flaw must undergo a stage of stable, precursor 
crack growth prior to the critical instability. 
It is noted that Cm in Equation 7 exceeds Co in 
Equation 2 by a factor of 4; recalling that Co ~< c~ 
always, this factor represents the maximum degree 
of precursor extension possible. (We may note 
that the ratio Cm/C o for line flaws is substantially 
larger than that for point flaws [6, 8], namely, 
2.52, reflecting a less rapid falloff in the function 
K(c)  in the former instance.) Insertion of Equation 
7 back into Equation 5 gives the appropriate 
inert strength at e i = Oa(Cm) = am, i.e. 



o i = Ke/2t~Cl/m2 = K2e/4~xPt ,  

(c o < Cm). (8a) 

If, on the other hand, Co is larger than Cm, the crack 
becomes critical without precursor extension; 
insertion of oi = oa(c~) into Equation 5 accord- 
ingly yields 

0 i (Ke/tPCol/2)(1 - -  P ' K  c ' ' /2"  = X tl e o ), 

(cO > Cm). (8b) 

We note that the inital flaw size appears explicitly 
only in the second of these last two equations. 

2 .2 .  D y n a m i c  f a t i g u e  f o r m a l i s m  
In keeping with our previous course [ 1 - 6 ]  we 
assume that in a reactive chemical environment 
the median crack can grow subcritically, i.e. at 
K < K e ,  in accordance with the crack velocity 
function 

v = v o ( K / K c ) "  (9) 

where the exponent n and coefficient vo are 
parameters to be determined empirically for any 
given material/environment system. In combi- 
nation with Equation 4 this function yields, for 
a time-varying applied stress function % ( t ) ,  a 

master differential equation for fatigue, 

dc /d t  = ! V o [ X P / K e c  1/2 + t ~ % ( t ) c l / 2 / K e ] n .  (10) 

This equation has to be solved for the time to 
take the crack from its initial (stable) to its final 
(unstable) configuration, at which point the stress 
level defines the fatigue strength, aa = af. 

An analytical solution of Equation 10 is avail- 
able only for the special case a a = constant = of, 
with flaws in the precursor growth domain 
c0 ~ Cm [6]. However, this solution is of  precisely 
the same form as obtained generally for Griffith- 
like flaws; there the effect of  varying the function 
aa(t) is manifest as a systematic change in the 
intercept of  the appropriate (logarithmic) fatigue 
plot. On the assumption that the same generality 
holds for flaws with residual stress fields, we 
obtain the following result for the case of  special 
interest here, namely 6 a = aa/ t  = constant = af/tf 
at specified contact load Pt [6]: 

of = (X'ba) 1/("'+1) (11) 

where the slope on a plot of  log of against log ba 
relates to the true crack velocity exponent via the 
relation 

n = 2 n ' - - 2  (12) 

(cf. the case of  Griffith flaws, for which n = n'); 
the intercept likewise relates to the velocity coef- 
ficient via 

V0 (47rn,)1/2 n' ' =: amCm/~. .  (13) 

The validity of  the generality assumption leading 
to this solution has been confirmed by numerical 
integrations of  the master differential equation 
[3,61. 

Numerical analysis is also useful for investigat- 
ing the effect of  a varying initial flaw size on the 
fatigue behaviour [3]. Basically, it is found that 
the predicted of(6a) response is insensitive to the 
value of  C'o, up to c m ; beyond this point Equations 
12 and 13 can no longer be relied upon to provide 
accurate crack velocity parameters. In the latter 
case, therefore, the advantage of  a closed-form 
solution is lost, in addition to which additional, 
quantitative information on the initial crack con- 
dition is required. Notwithstanding these potential 
complications, Equation 12 serves to demonstrate 
the substantial discrepancies that can occur 
between "apparent"  crack velocity parameters 
(i.e. as evaluated on the basis of  zero residual 
stress) and " t rue"  parameters pertinent to macro- 
scopic crack laws. 

3. Experimental 
3.1.  P r o c e d u r e  
Specimens of  soda-lime glass, from the same batch 
as that used for the point-flaw studies of  [1] and 
[2], were cut into bars 50 by 10 by 3ram.  These 
bars were annealed at 520~ for two days to 
remove any spurious surface stresses. 

Line flaws were introduced along the transverse 
centre line of  each prospective tensile surface for 
flexural strength testing. This was effected by 
mounting a bevelled tungsten carbide glass-cutting 
wheel of  half-angle 66 ~ and radius 3 mm onto 
the indenter arm of a standard hardness tester, 
allowing the wheel to bear down onto the speci- 
men surface at a prescribed normal load, and 
translating the specimen support table at a velocity 
-~ 0.5 m m s e c - k  The wheel traverse was stopped 
at a distance about 2 mm from opposite bounding 
faces of  the specimen centre line, to avoid spurious 
edge chipping. The flaws thus produced were 
examined optically to ensure that the deformation 
tracks (see Appendix I) and the associated median 
cracks were sufficiently well defined. The flaws 
showed substantial birefringence in polarized light, 
consistent with the existence of  an intense residual 
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contact field; an example is shown in Fig. 2. It 
was noted that at loads in excess of P ~  20N 
lateral crack growth became excessive to the point 
of causing occasional chipping. A normal load 
P = 5N was thereby selected for all subsequent 
strength testing. 

The strength tests themselves were conducted 
in four-point bending, with an outer span of 
30.Omm and an inner span of 7.0mm. These were 
run about 30 rain after indentation, to allow for 
saturation of post-contact slow crack growth 
(Section 2.1). Immediately prior to insertion into 
the bending fixture the indentation tracks were 
covered with either silicone oil, for inert strength 
testing, or water, for fatigue strength testing. The 
bending load delivered to the specimens was 
measured by a conventional strain-gauge instru- 
mented cell for "slow" tests, i.e. for failure times 
> 10sec, and by a piezoelectric cell for "fast" 
tests. Simple beam theory was used to evaluate 
the corresponding tensile stress on the flaw. All 
broken specimens were examined optically to 
confirm that failure had indeed initiated from the 
indentation site; those few exceptions, traceable 
to unusually large edge flaws, were rejected from 
the data accumulation. 

3.2. Calibration tests 
Some preliminary tests were carried out to investi- 
gate further the relative values of c~ and Cm, 
bearing in mind the significant changes in the 
mechanical response of the crack system that are 
predicted once the former exceeds the latter 
(Sections 2.1 and 2.2). These tests also served to 
provide useful "calibration" parameters for the 
ensuing' dynamic fatigue data analysis. 

Accordingly, dummy specimens were prepared 
for crack depth measurements by section viewing. 

The sections were obtained by propagating large 
cracks from indentations on faces opposite to 
those containing the line flaws. This was most 
conveniently effected by stressing the specimens 
to failure in the bend apparatus, with the line 
flaws on the compression side to ensure no 
spurious extension of the primary crack system. 
An advantage of this procedure was that several 
line flaws could be placed on a given specimen. 
From 8 such flaws produced at the standard con- 
tact load of P = 5 N an initial flaw size c~ = 46 + 
5/am (mean and standard deviation) was measured. 

In principle, a similar procedure could be used 
to gain an estimate of Cm, for systems in the 
domain c m > c~. The method, successfully 
employed in an earlier study of point-indentation 
flaws [8], requires only that the crack system 
should be stressed to just below the critical insta- 
bility prior to sectioning. However, comparative 
inert strength measurements for specimens with 
line flaws in the standard as-produced (X :/: 0) and 
re.annealed (X = 0) states [1] suggested that the 
condition Cm> c~ would be violated, thereby 
rendering this procedure ineffective. Thus, we 
obtained ai = 81.0 -+ 9.5 MPa and a ~  112.7 +- 
13.1 MPa, respectively (mean and standard devi- 
ation, 10 specimens each series), corresponding 
to a ratio ai/o ~ = 0.72 + 0.17. From Equations 
6 to 8 we derive 

cm/c; = (a~ 

e m / C ~  = 4(1 0 2  - -  o i / 6  i ) , 

(c;  ~< era) 

(14a) 
(C~ > c,.) 

(14b) 
t which gives us Cm/Co = 0.31 + 0.24; the line flaw 

system thus lies well outside the region where the 
fracture mechanics response is independent of 
initial conditions. 
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Figure 2 Section view of a linear 
flaw in glass, in crossed polars. 



For the above determinations we may make two 
useful parameter evaluations. First, Equation 6 
yields 

~ / K  e = 1/a~ in  = 1 .31+0 .17MPa-am -1/2. 

(15)  

Then, in conjunction with Equation 8b, we obtain 

• = c ; "2 (1  - ~i/~ ~ 

= (1 .90+0 .81) •  ~n. (16) 

4. Dynamic fatigue: results and analysis 
The results of the dynamic fatigue tests are shown 
in Fig. 3. Each data point on this plot represents 
the mean and standard deviation, in logarithmic 
coordinates, of 10 to 15 specimens at the appro- 
priate stress rate. The curve represents a numerical 
evaluation of the master differential equation, 
Equation 10, using the following parameters: 
~ / K  c and xPJKe ,  and the initial crack size C'o, 
as determined in Section 3.2; kinetic parameters 
n = 17.9 (-+ 0.5) and Vo = 2.4 (-+ 0.6) mm sec -1 
from the earlier study on the same glass/water 
system, but with re-annealed point flaws [1 ]. In 
comparing this curve with the data it should be 
noted that the evaluation of Equation 10 is sensi- 
tive to parameter input in the region c~) > era; the 
large error quoted above for Cm/C'o is especially 
pertinent in this context. With due acknowledge- 
ment of  this point, we have been able to predict, 
to within the limits of experimental uncertainty, 
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Figure 3 Dynamic fatigue of line-indented soda-lime glass 
in water. Curve through the data points represents evalu- 
ation of master differential equation, Equation 10, using 
"calibration" parameters (see text). Shaded region 
indicates inert strength limit. 

the fatigue response of specimens with contact- 
induced line flaws. 

It is perhaps worth reiterating at this point that 
the curve fit procedure just described takes full 
cognizance of a residual driving force in the 
fracture mechanics. If we were to adopt lhe 
normal course in fatigue analysis and treat the 
indentation cracks as ideal Gfiffith flaws we would 
compute an entirely different curve. It might be 
argued, for instance, that since ca > Cm in our 
experiments the crack front could be considered 
sufficiently far removed from the actual source 
of residual stress for the system to be effectively 
dominated by the applied loading field. A test of 
this argument is to measure n' from a data fit to 
Equation 11: as indicated in Section 2.2, the 
prediction for Griffith flaws is n' = n = 17.9 + 0.5; 
the corresponding prediction for flaws under the 
full influence of a residual stress term (i.e. for e~ < 
cm) is, from Equation 12, n' = n/2 + 1 = 10.0 -+ 
0.3. An actual least squares fit to the data shown in 
Fig. 2 gives n ' =  10.2-+0.3. It is clear that the 
residual stress effect is far from insignificant here. 

5. Discussion 
We have indicated that residual-contact terms can 
play a large role in the mechanics of line-flaw 
growth to failure. In particular, crack velocity 
exponents as estimated from slopes of fatigue 
plots can be in error by as much as a factor of 
two if such residual terms are omitted from the 
analysis. This factor is considerably greater than 
that for the corresponding point-flaw case [1], 
reflecting the greater range of influence of the 
residual stress intensity factor K r in the line-flaw 
geometry [6]. Bearing in mind the key position 
occupied by crack velocity exponents in modem- 
day lifetime design schemes for brittle components 
[18, 19] it would seem reasonable to advocate 
more attention to characterization of strength- 
controlling flaws, especially in regard to their 
local configurational stress history [20]. In cases 
where direct observation of critical flaw evolution 
proves impractical during the actual failure testing, 
some alternative means of quantifying the residual 
stress effect, e.g. by comparing inert strengths for 
flaws in their as-produced and re-annealed states 
(Section 3.2), would appear desirable. 

The results described above have important 
implications concerning the lifetime properties of 
ceramics whose surfaces have been finished by a 
contact-induced process, especially by machining. 

1311 



Machining damage may be regarded in terms of a 
high density accumulation of near-linear flaws. 
Generally, the critical, strength-degrading member 
of this accumulated population will experience a 
somewhat reduced residual crack driving force 
relative to that for an isolated median crack. For, 
in addition to the several relaxation factors 
mentioned in Section 2.1 in relation to the validity 
of Equation 2, neighbouring damage tracks will 
interact via their elastic/plastic fields so as to 
impose a countervailing, crack closure stress at 
the reference flaw [2!]. Moreover, the enhanced 
lateral-crack chipping which facilitates the 
machining process might be expected to lead to 
physical removal of the deformation zone at the 
mouth of this flaw, and thereby of the very source 
of the residual field. Recent detailed investigations 
of machining damage in hot-pressed silicon nitride 
by Marshall [22] have nevertheless demonstrated 
that residual contact stresses can still play a 
dominant role in the failure mechanics. Indeed, 
in Marshall's strength experiments, conducted 
under effectively inert testing conditions, the 
critical median flaw always showed substantial 
precursor growth prior to reaching instability 
(i.e. Co < Cm, in the terminology of Section 2); the 
silicon nitride thus appears to be less influenced 
by residual-field relaxation processes than does 
our glass, presumably due to a relatively strong 
immunity to environmental slow crack growth 
effects. In this context it may be pointed out that 
much of present day ceramics strength analysis is 
carried out on test pieces with machined surfaces, 
in conjunction with conventional fatigue theory. 
It is clear now that crack velocity parameters 
obtained from this approach will generally not 
match those measured in macroscopic-crack test 
pieces [13], and, as such, will not provide a sound 
basis for lifetime design, particularly if the predic- 
tions involve extensive extrapolations beyond the 
data range. 

Although the line-flaw test procedure described 
in this work is useful for emphasizing the import- 
ance of residual-stress terms in flaw micromech- 
anics it suffers certain disadvantages, particularly 
in comparison with its point-flaw counterpart, as 
an avenue to routine materials evaluation. For a 
start, the median flaws remain subsurface along 
their length, and are therefore not amenable to 
optical examination in the simple manner of radial 
cracks at Vickers impressions. We have also noted 
that the growth of the line flaws tends to be some- 
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what erratic. Again, it would appear that line flaws 
are more susceptible to processes which partially 
relax the residual contact field, thereby leading to 
violation of the proviso c0 < cm for validity of the 
closed-form fatigue solutions Equations 12 and 13. 

Appendix I: Equivalence relations between 
normal-line and sliding-point loading 
In this Appendix we investigate the connecting 
relation for the "effective" line force in two, 
essentially equaivalent, contact configurations: 
(i) wedge loading, at actual normal contact load 
Pt per unit length; (ii) axisymmetric loading, at 
normal contact load P but with linear translation. 

To obtain the correspondence between the two 
cases we define hardness parameters in terms of 
the mean contact pressures: 

Ht = Pd2a  (line) (Ala) 

H = P[ota 2 (point) (Alb) 

where a is a geometrical constant of the point 
indenter. The condition for equivalence is that the 
track half-widths a should be identical in Equations 
Ala and Alb, i.e. 

P~ = [2Hd(oLH)I /2]P1/L (A2) 

Then insofar as the hardness parameters can be 
regarded as load invariant, which generally requires 
that the indenters should be of fixed profile 
(thereby preserving geometrical similarity)[23], 
we may use Equation A2 to evaluate the effective 
line force generated in translating-point contact. 

We may note that the essence of this result, 
that Pz cc p1/2,  is not addressed in the present 
experimental study, since all data are obtained 
at a single load P = 5 N. 

Appendix I I: Elastic/plastic analysis of 
residual line-contact field 
Here we derive an expression for the dimensionless 
material/indenter parameter X in Equation 1 of the 
main text, in terms of elastic/plastic properties of 
the material and the half-angle q~ of the indenter. 
To do this we proceed exactly as for the point- 
contact configuration described in [9], simply 
replacing the model of an expanding spherical 
cavity used there with an analogous expanding 
cylindrical cavity, as appropriate to the plane- 
strain deformation geometry in Fig. 1. 

Thus, we suppose that the plastic zone beneath 
the linear track may be considered to be of 



circular cross-section, radius b. The residual force 
field associated with the formation of this zone 
may be estimated by the following hypothetical 
cut, operate and heal sequence: 

(i) Starting with the original, unstressed elastic 
half-space, remove a cylindrical segment of radius 
b about the contact centre line. 

(ii) Plastically deform the removed segment 
over the ultimate contact area to produce a 
characteristic line impression of half-width a, such 
that the plastic strain is accommodated as an 
outward radial displacement at the cylinder sur- 
face. Then, ignoring any depth recovery during 
unloading of the indenter [24], so that we may 
equate the impression depth to a cot ~b, we obtain 
for the configurational bulk strain of the zone 

6 V/Vo: (a2 cot r 2. (B1) 

(iii) Restore elastically the segment to its 
original radius by applying a hydrostatic pressure 
across the cylindrical boundary, 

Pb oc tr (6 If/V) o: E(a/b)~ cot ~b (B2) 

where in converting from bulk modulus K to 
Young's modulus E we have omitted terms in 
Poisson's ratio. 

(iv) Restore the cylinder to its original cavity 
in the half-space, allow the interface to heal, and 
allow the system to relax elastically. The cylinder 
will then exert an outward pressure on the 
encasing matrix. In the far-field approximation 
c >> b this pressure will be manifest as a residual 
mouth-opening line force 

p~ ~ pb b cc [(a/b )(E/Hz) cot ~blP l (B3) 

where we have invoked Equation A1 a to eliminate 
a in favour o f P  I. 

To proceed beyond this point we need to deter- 
mine the dependence of the elastic/plastic cavity 
parameter a/b on material/indenter properties. 
For this we make recourse to Hill's analysis for 
the axially symmetric cylindrical problem [25]. 
His analysis provides an approximate normalized 
relation for the outward pressure P0 acting on the 
internal cavity wall of radius ro, 

po/E = [I + In (blro)2]/[(5 -- 4v)(b/ro)2]. 

(n4) 

A plot of Equation B4 is shown, for Poisson's 
ratio v = 0.25, as the solid curve in Fig. B1. Over 
a greater part of the range of b/ro covered this 
function may be approximated by the dashed line 
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Cavity Pressure Parameter, E/po 
Figure B1 Plot of Equation B4, solid curve, and its power- 
law approximation, dashed line. 

representation, which corresponds to a simple 
power-law relation 

b/ro o~ (E/Po) 'n, (B5) 

where m ~ 2/3. If now we  identify the internal 
pressure with the appropriate hardness parameter , 
Po = Hz, and equate the volume of the cavity with 
the volume of the wedge impression, a cot~b = 
Zrro 2, we have 

b/a o: (E/Hl)2/3(cot q))a/2 (B6) 

The results from the expanding cylindrical 
cavity analysis are, in the far-field approximation 
considered here, pertinent to a straight-fronted 
crack of depth c loaded at its mouth by a concen- 
trated line force Pr. The stress intensity factor 
for such a crack is of the form K r cc Pr/c 1/2 so, 
combining Equations B3 and B6, we obtain the 
requked result for the master parameter in 
Equation 1 [9], 

X = ~(E/Hz)a/a(cot q~)1/2 (B7) 

where ~ is a further dimensionless constant, but 
one which is independent of material or indenter 
properties. 
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